Mathematical description

Notations

  • $G(V,E)$ graph with vertex set $V$ and edge set $E$, $E \subset V\times V$
  • $\mathcal{N}(x)$ is the neighborhood of $v$, i.e., the set of nodes adjacent to vertex $x$, not including $x$
  • $|S|$ is the cardnal of set $S$
  • $A$ the adjacency matrix of $G(V,E)$

Vertex degree

\[k(v) = | \mathcal{N}(v) |, \quad \forall v \in V \]

Local cluster coefficient

\[\textrm{lcc}(v) = \sum_{ (v,u) \in E} \frac{ \textrm{cn}(v,u) }{ k(x)(k(x)-1)} = \frac{| \mathcal{N}(u) \cap \mathcal{N}(v)|}{ k(x)(k(x)-1)} \]

see \cite{Watss-xxx}

(Perron) eigenvector centrality

\[\textrm{eig-c}(v) = \textrm{to fill-in}\]

see \cite{newman-girvan-2004}

hits

\[\textrm{hits}(v) = \]

see \cite{Kleinberg-1999}

Edge degree

\[k( \ell ) = k(u) + k(v) -2, \quad \ell = (u,v) \in E\]

Common neighbors

\[\textrm{cn}(\ell) = | \mathcal{N}(u) \cap \mathcal{N}(v)|, \quad \ell = (u,v) \in E \]

It is equal to the number of triangles containing edge $\ell$.

See \cite{newman-girvan-2004}

Adamic-Adar index

\[\textrm{aa}(x,y) = \sum_{u \in \mathcal{N}(x) \cap \mathcal{N}(y) } \frac{1}{ \log( k(u) ) } \]

see \cite{adamic-adar-2023}

Ricci curvature